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[. Introduction

As microprocessors fall in price and increase in performance, computing devices, and the
software that controls such devices, assume alarger role in society. For example, many gasoline
filling stations now offer computer-controlled pumps that alow a customer to specify his
preference for octane, to fill histank, and to pay for his purchase by credit card, all without
human assistance. Automated teller machines (ATMs) abound in every shopping mall, grocery
store, and airport terminal; credit card-activated tel ephones appear where travelers congregate;
automobiles run more cleanly, efficiently, and safely with the aid of microprocessors; computer
bulletin-board systems allow subscribers to scan product offerings, to select purchases, and to
pay by credit card. All of these, increasingly common, computer applications exhibit some form
of real-time processing and concurrency. Many involve distributed processing, aswell. Asthe
number and scope of these real-time, automated applications grow, our ability to anayze
reguirements and to design solutions for concurrent, real-time systems must improve. (Readers
unfamiliar with the issues separating the design of concurrent, real-time systems from sequential
applications should consult an introductory exposition, such as that provided by Laplante".)

Early attemptsto analyze requirements for real-time systems focused on extensions to
structured analysis.  The resulting technique, Real-Time Structured Analysis (RTSA)? added
control transforms, control event flows, and state transition diagrams to structured analysis.
RTSA was first coupled with structured design to map real-time problems to sequential,
one-task, designs. Later Research showed how RTSA could be mapped to a concurrent tasking
design using Design Approach for Real-Time Systems (DARTS)®. For designing real-time
systems, DARTS provides a significant improvement over structured design.

Introduction of Ada' as a programming language and run-time system for embedded,
control software expanded the conceptual model through which most real-time, concurrent
systems could be approached”. Adaincluded a multitasking model, synchronization techniques,
and support for information hiding. These advances encouraged researchers to devise new
methods for analyzing and designing real-time systems. One such method, concurrent
object-based rea-time analysis (COBRA)?, evolved from RTSA. While retaining the notation
from RTSA, COBRA adds. (1) guidelines for developing an environmental model,

(2) guidelines for decomposing a system into subsystems, (3) criteriafor identifying objects and
functions, and (4) techniques for analyzing behavioral scenarios. COBRA also introduced the
notion of aggregate objectsinto the analysis. COBRA analyses can be mapped readily into
concurrent designs, and then into Ada implementations, using the Ada-based Design Approach
for Real-Time Systems (ADARTS)®.

Following the publication of Ada, an object-based programming language, further
developments led to the emergence of object-oriented languages, such as C++’ and Eiffel®.
Object-oriented languages include expanded features for software reuse (inheritance,
polymorphism, and object and method contracts)®. Object-oriented programming appears
attractive because the cost of software development might be reduced as the amount of software
reuse increases. Aswith Ada, object-oriented languages expanded the conceptua model
available to software designers. Recently, a number of methods have emerged for analyzing and

T Ada is a registered trademark of the U.S. Department of Defense
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designing systems using object-oriented concepts'®*#*3, One such method, the object modeling
technique (OMT)*, appears to build on the concepts used in RTSA and COBRA, and, thus,
might be applicable to concurrent, real-time systems.

This paper proposes that OMT provides a suitable analysis method for concurrent,
real-time systems. The argument is supported through application of OMT to an example
real-time application, an automated gas station management system (see Appendix A for the
requirements statement). Further, amapping is proposed from an OMT analysisto adesign,
based on an Object-Oriented Design Approach for Real-Time Systems (OODARTS), which
extends the object-based ADARTS method to encompass a full, object-oriented, design model.
To enable comparison between the RTSA, COBRA, and OMT methods, an analysis of the
automated gas station management problem is presented using each of the methods. The RTSA
specification is given in Appendix B, the COBRA specification in Appendix C, and the OMT
specification in Appendix D. To facilitate an evaluation of the OODARTS design method
against ADARTS, two designs for the gas station management system are shown. One design,
included as Appendix E, usesthe ADARTS method to design a solution from the COBRA
analysis. The second design, included as Appendix F, uses the proposed OODARTS method to
design a solution from the OMT analysis.

Before discussing the various analyses and designs shown in the appendices, this paper,
in Section |1, gives abrief description of the automated gas station problem. Section 1|
discusses the various problem analyses: first, the RTSA analysis, followed by the COBRA
specification and then the OMT model. Section IV presents the two design solutions: first, the
ADARTS design, developed from the COBRA analysis, and then the OODARTS solution,
developed from the OMT model. Section V provides a comparative evaluation of the strengths
and weaknesses of the various analysis and design approaches. Special consideration is given to
the applicability of OMT and OODARTS as analysis and design methods for concurrent,
real-time systems. The paper closes with some conclusions and alist of references.

Il. A Real-Time Gas Station Control Problem

The real-time problem used as an example in this paper should be familiar to many.
Increasingly, gas stations are introducing automated pump processing to enable customersto
purchase gasoline by inserting a credit card or a cash card, by selecting a type of gasoline, and
then by pumping the gas for themselves. Of course, customers may still opt to pay in cash or by
credit card at a booth where a human attendant waits. The attendant can also observe the gas
station for safety hazards and emergencies, correcting hazards and reporting emergenciesto the
police and fire departments, as appropriate.

The gasoline station used as an examplein this paper carries the familiar concept of an
automation-assisted gas station to afuture time where gas stations might be completely
automated. Such stations would need automated gas station management (AGMS) software to
control their operations. The reader should imagine that the Pal Sal (Pump A Little, Save A Lot),
Inc. gas station chain is considering total automation of their gas stations. Further, image that
Pal Sal has assembled a requirements statement for automating their gas stations. The imagined
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requirements statement is provided as Appendix A. To help to envision the problem, a
conceptual diagram of an automated Pal Sal station is shown as Figure 1.
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Figure 1. An Automated Gas Station Concept

Each gas station comprises a number of pumps, initially eight, capable of accepting credit
or cash cards from customers, of dispensing gasoline, when authorized, of recording the
transaction, and of updating a customer’s cash card to deduct the amount of money used on gas.
If acash card isinserted, the pump can validate the card by examining the cash value; any
customer can purchase gas with a cash card, up to the limit of cash on the card. If acredit cardis
inserted, the pump must send an authorization request to a remote central facility, and must then
await areply. If the card isvalidated, then gas can be dispensed until the customer turns off the
switch, or the switch is shut off automatically. After processing a credit transaction, the pump
sends the cost of the gas purchased, and the account number used to buy the gas, to the remote

central facility. Inthe example, each pump is capable of dispensing only a single type of
gasoline.

Each pump comprises a display to show the customer the amount and cost of the gas
purchased, a switch to activate the pump dispenser, and two LEDs to inform the customer when
their cash card is used or when their credit card is disapproved. Each pump operates
autonomously, but a gas station controller can request that individual pumps finish the current
transaction, if any, and then lock.

Each station includes a gas station controller that monitors safety and operating conditions
at the gas station. Connected to the gas station controller, a set of paired smoke and heat
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detectors monitor the smoke particle concentration and temperature, respectively, at each pump.
These detectors areillustrated in Figure 1 as eight boxes, one mounted at each pump. Each box
contains a smoke and heat detector. Whenever a smoke particle concentration or temperature
threshold is exceeded at one of the detectors, an alert israised at the gas station controller. The
gas station controller, upon receiving an alert, sounds an alarm at the station, sends an alarm
message to the remote central facility, and then requests that each pump close operations. The
gas station can also receive shutdown and restart requests from the remote central facility. Upon
receiving a shutdown request, the gas station asks that all pumps cease operations. Upon
receiving arestart request, the gas station asks that all pumps recommence operations.

A communications link, as shown in Figure 1, provides the path between the gas station
controller and the remote central facility, as well as a means for the pumps and remote central
facility to exchange information. The link can go up and down. When the link is down, the gas
station is required to shutdown. When the link returns to operation, the gas station should
automatically restart. When the link goes down, any transactions in progress are, of course,
terminated, but arecord of any credit transactions must be saved, so that the cost of gas
purchased and the account number can be passed on to the remote central facility once the link
resumes operation.

The remote central facility maintains a staff of operators to monitor alarms at each gas
station and to maintain the central facility. The remote central facility also maintains a database
of corporate credit accounts.

The interested reader should take afew minutes to scan the five page problem statement
included as Appendix A. Those readers familiar with RTSA might also scan Appendix B to get
amore precise understanding of the automated gas station management system (AGMYS)
requirements.

[11. Problem Analyses and Specifications

At this stage in the paper, we switch writing styles to amore personal, first person plural.
We believe this switch in viewpoints hel ps to emphasize the nature of the design process. Since
the requirements have been stated, we begin to analyze those requirements, and to document our
understanding. To effectively communicate our thinking, we believe that the reader should know
that we exist, that we are thinking beings, and that we can make mistakes and reach assessments
and possess opinions with which the reader may not agree. Also, we think that the more active
writing style that flows naturally from afirst person view will help us keep the reader’s attention.

In this, the third section of our paper, we present the analysis of the automated gas station
management system (AGMS). We performed the analysis using three different methods, and we
documented each of the analyses. For thefirst analysis we used Real-Time Structure Analysis
(RTSA), the simplest, oldest, and most widely applied of the analysis techniques we present in
this paper. Our main purpose in showing an RTSA specification isto present the AGMSina
more precise manner than the requirements statement in Appendix A by using an analysis
method that many readers will be familiar with and that most readers, familiar or not, will be able
to easily comprehend. The RTSA specification provides alevel base for understanding the
AGMS problem before we move on to consider progressively more complicated specifications
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resulting from the Concurrent Object-Based Real-time Anaysis (COBRA) method and the
Object Modeling Technique (OMT). So, we begin with RTSA.

A. RTSA -- A Great, Little Method for Real-Time Analysis

Real-Time Structured Analysis (RTSA) begins with the familiar concepts from structured
analysis: context diagrams, data flow diagrams, data dictionaries, and puesdo-code specifications
for leaf-level functions. To these concepts, the idea of control transforms, encompassing state
transition diagramsis added. The result: a problem analysis method for real-time systemsthat is
easy to use, easy to learn, and easy to understand. We have applied RTSA to our AGMS
problem, and have documented the resulting specification in Appendix B.

The data and control flow diagrams for the AGMS are given on pages B-1 through B-7.
The data dictionary comprises pages B-8 through B-11. The psuedo-code specifications, one for
each leaf node data transform, are recorded on pages B-12 through B-17. The state transition
diagrams, one for each control transform, are shown on pages B-18 through B-20.

The AGMS context diagram, B-2, delineates the boundary between the software and the
hardware components of the AGMS. Asyou can readily see, the AGMS software must interact
with a card reader, a communications link, some LEDs, some switches, an alarm, some gas
dispensers, and some detectors. On page B-3, the AGMS is decomposed into three functions: 1)
manage pump (one of which will exist for each pump in agas station), 2) manage
communications link (one per gas station), and 3) manage gas station (one per gas station).

B-4 presents a further decomposition of the manage pump function. Here we see that
each pump monitors a pump on/off switch (1.2), and monitors a credit/cash card reader (1.3).
These devices can cause events to which the pump must respond. The Control Pump control
transform (1.1) accepts these events, as well as events arriving from the Manage Gas Station (3)
and Manage Communications Link (2) transforms, analyzes the events against the current state
of the pump, and then selects certain data transforms to activate. Data transforms controlled by
Control Pump (1.1) include: Authorize Transaction (1.4), Dispense Gas (1.5), Complete
Transaction (1.6), Reject Transaction (1.7), and Establish Transaction (1.8). All of the data
transforms shown on B-4 are leaf-level transforms, and therefore, each of them has a
corresponding mini-specification in psuedo-code. We encourage the reader to peruse these
mini-specifications to get a better understanding of the AGMS requirements. The Control Pump
control transform refers to a state transition diagram (on B-19) that defines the behavior of the
transform. We hope the reader will review the finite state machine on B-19 to understand how
Control Pump works. On the diagram, events are shown above lines, with corresponding actions
shown below the same line. Conditions that must be satisfied coincident with an event are shown
in [square brackets].

To run quickly through the Control Pump state diagram (see B-19), we see that the pump
begins operation in the open state. Once a cash or credit card isinserted, the pump moves to the
waliting authorization state, while invoking the Authorize Transaction function. If the transaction
Is authorized, the pump moves into the authorized state, unless the customer turned on the switch
while authorization was pending, in which case the pump moves directly to the dispensing state
and enables the Dispense Gas function. If the customer’s cash card runs out, then the gas
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dispenser stops, the Compl ete Transaction function is performed, and the pump returnsto the
open state. If the switch isturned off while dispensing, the pump tells the gas dispenser to halt
and enters the waiting on done state. The left-hand side of the state diagram deals with requests
to close the pump while the pump isin various states. We think the reader can now easily follow
those events and actions. Once the pump enters the closed state, it remains there until an open
event arrives from the Manage Gas Station data transform.

The Manage Communications Link (2) transform is further decomposed into two levels:
B-5 showsthefirst level, and B-6 further decomposes the Send to Link (2.5) transform from B-5.
The inputs to the Manage Communications Link transform are all allocated on B-5. Incoming
messages from the communications link are handled by Add to Rev List (2.1), which saves each
message into the RCV LIST data store and then calls Decode Message Header (2.2). Decode
M essage Header removes a message from the RCV LIST data store, analyzes the message, and
generates any events stimulated be the message. Incoming Link State Interrupts are handled by
Anayze Link State (2.3). Asappropriate, Analyze Link State will generate link events for
Manage Gas Station (3) and will pass on any new link status to Send to Link (2.5). Add to Tx
List handles messages flowing from Manage Gas Station (3) and from any of the Manage Pump
(2) transforms. Add to Tx List saves the incoming message into the TX LIST data store and then
sends a Wakeup to Send to Link (2.5). Send to Link isfurther decomposed on B-6.

Receiving anew link status or receiving a Wakeup causes Transmit Message (2.5.1) to
act. On aWakeup, Transmit Message checksthe TX LIST for messages to send and checks the
link status for an up link. If all conditions are ready, a message is removed from TX LIST and
sent as an Outgoing Message. If anew link status changes the link from up to down, then
Transmit Message (2.5.1) sends a Save to Save Credit Transactions (2.5.2) which then moves
any credit transactions from the TX LIST to the CREDIT TRANSACTION LIST while
discarding any other messagesin TX LIST. If anew link status changes the link from down to
up, then Transmit Message (2.5.1) sends a Restore to Restore Credit Transactions (2.5.3) which
then moves the contents of CREDIT TRANSACTION LIST tothe TX LIST.

The Manage Gas Station (3) transform is further decomposed on B-7. Here we see that
Manage Gas Station is controlled by a state transition diagram (shown on B-20) embodied in
Control Gas Station (3.1). The smoke and heat detectors in the gas station are monitored by
Monitor Detectors (3.2) which generates a Threshold Exceeded event when appropriate. Other
events arrive at Control Gas Station from Manage Communications Link (2). Control Gas
Station can trigger any of five functions: Sound Alarm (3.3), Reset Alarm (3.4), Send Alarm
Message (3.5), Send Opens (3.6), and Send Closes (3.7). The behavior of each of these functions
is described in a mini-specification. The conditions under which each of these transformsis
triggered are detailed in the Control Gas Station state transition diagram (B-20). We encourage
the reader to review the Control Gas Station state transition diagram, and the related
mi ni-specifications.

The data dictionary on B-9 through B-11 is self-explanatory. Each input and output data
item shown on the context diagram is described. Also the internal data stores are described.
From RTSA, we now take a step up in complexity to COBRA.

B. COBRA -- A Means To Analyze Larger Real-Time Systems
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The Concurrent Object-Based Real-time Analysis (COBRA) method starts with RTSA
as abase and adds severa extensions intended to help analysts understand large, real-time
systems. COBRA dividesthe analysis of a system into two parts. 1) an environmental model
and 2) a behavioral model. The environmental model comprises a system context diagram, and
where appropriate, supporting subsystem context diagrams. COBRA includes a set of guidelines
for developing the environmental model. In fact, one of the extensionsto RTSA provided by
COBRA isthe concept of decomposing alarge, real-time system into subsystems. Another
extension with COBRA permits representing subsysterm components not only as functions, but
also as objects (thus, the object-based component of the name COBRA). COBRA includes
criteriafor identifying functions and objects. Because COBRA permits representation of objects,
the level of information hiding supported exceeds that available within RTSA. A final extension
of note provided with the COBRA method is atechnique for behavioral scenario analysis.
Scenario analysis yields a more rigorous devel opment of the necessary state transition diagrams
than is possible using RTSA.

For the AGMS problem, our COBRA analysis is documented on pages C-1 through
C-54. The system context diagram (C-2) mirrorsthat given in the RTSA specification; however,
we immediately decompose the problem into three subsystems, each viewed as aggregate
objects, illustrated on C-3. One subsystem, for real-time control, is a pump object (one instance
of this object will exist for each pump in a given gas station), one is a communications (server)
object, and the other is a gas station (real-time coordination) object. Here, each of the external
data and control flows are allocated to one of the subsystems, and data and control flows between
the objects are identified. The subsystem context diagrams on C-4, C-5, and C-6 represent each
subsystem’s context, showing other subsystems, when inter-subsystem data and control flows
exist, asterminators. This completes our COBRA environmental model for the AGMS. Next,
we devel oped the behavioral model.

We developed one behavioral model for each of the three subsystems we identified in our
environmental model. A COBRA behavioral model consists of: 1) data/control flow diagrams,
2) adatadictionary, 3) psuedo-code for each leaf-level datatransform, and 4) a state transition
diagram for each control transform. In addition, the scenario analysis supporting the
development of the state transition diagrams becomes part of the behavioral model. We included
the scenario analysis apart from a specific subsystem because we used the scenario analysis to
verify and correct our state transition diagrams. Thus, we viewed the scenario analysisas a
system-level specification, rather than a subsystem-level specification.

Our behavioral model for the pump subsystem can be viewed on pages C-8 through C-16.
C-9 provides the top-level view of the subsystem through a data/control flow diagram. Here, we
decompose the pump subsystem into five objects: a Pump Control object (1.1), aSwitch (1.2), a
Card Reader (1.3), LEDs (1.4), and a Gas Dispenser (1.5). Each of these, except the Pump
Control object, are leaf objects, and, so, a psuedo-code specification for each isincluded with the
mini-specification section (pages C-13 through C-15). We further decompose the Pump Control
object on C-10 into a Control Pump control object (1.1.1) and four supporting functions:
Authorize Transaction (1.1.2), Establish Transaction (1.1.3), Complete Transaction (1.1.4), and
Reject Transaction (1.1.5). Each of these |leaf-level datatransformsis further specified with
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puesdo-code. We further specify the control object with a state transition diagram show on C-16.
We document data items for the pump subsystem on pages C-11 and C-12.

Our behavioral model for the communications subsystem can be seen on pages C-20
through C-26. (Somehow, we managed to include two pages numbered C-26. Here, we refer to
thefirst of these.) C-21 provides the top-level view of the subsystem through a data flow
diagram. We included no control objects in the communications subsystem. We further
decompose the Send to Link function (2.5) on C-22. Thus, we decomposed the communications
subsystem into seven leaf-level datatransforms, or functions. Add to Rev List (2.1), Decode
Message Header (2.2), Analyze Link State (2.3), Add to Tx List (2.4), Transmit Message (2.5.1),
Save Credit Transactions (2.5.2), and Restore Credit Transactions (2.5.3). We provide
puesdo-code for each of these functions on pages C-23 and C-24. We give adata dictionary for
the communi cations subsystem on pages C-25 and C-26 (the first one).

Our behavioral model for the gas station subsystem is exhibited on pages C-26 (the
second of the C-26's) through C-30. C-27 shows the entire subsystem on one data/control flow
diagram, including three objects and three functions. We specify the Control Gas Station control
object (3.1), and its three supporting functions (Send Alarm Message (3.4), Send Opens (3.5),
and Send Closes (3.6)), with a state transition diagram (C-30) and psuedo-code specifications
(C-29), respectively. Our subsystem design also includes two device objects: Detector Array
(3.2) and Alarm (3.3). We further specify these objects with psuedo-code on C-29. Weinclude a
data dictionary for the gas station subsystem on C-28.

The final part of our COBRA analysisfor the AGMS entails an analysis of various
behavioral scenarios, as documented on pages C-31 through C-52. We used these scenariosto
verify our two state transition diagrams, as shown on pages C-53 and C-54. We describe each
scenario that results from an external event (C-31-1 through C-31-4), we show how each scenario
flows through our AGM S (C-32 through C-52), and then we relate each scenario to our two state
transition diagrams (C-53 and C-54).

From our COBRA model, we now move on to examine a method that relies on objects
and object-oriented concepts as the basis for problem analysis. We continue to use the AGMS as
our problem statement.

C. OMT -- Objects Most Telling, Objects Most Timeless

The Object Modeling Technique (OMT) represents a problem from an object-oriented
point of view, but uses three sub-models to do so. The object model provides the fundamental
view of the problem. The object model describes the structure of objects within a problem, the
rel ationshi ps between the objects, the attributes of each object, and ultimately, the functions, or
operations, of each object. The dynamic model yields a description of those aspects of a problem
that deal with issues of timing, sequencing, and control. The functional model represents those
aspects of a problem that require transformations of values, independent of when those
transformations occur. These three models, object, dynamic, and functional, are to be viewed as
related, with the object model being fundamental. The object model provides the main,
integrating view of aproblem analysis. The operations in the object model correspond to events
in the dynamic model and functions in the functional model. The dynamic model describes
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control regimes for objects that require such. The functional model contains functions that are
invoked through object operations or through actions in the dynamic model. Functions will
operate on attributes within the object model. The functional model might also describe
constraints on various object attributes.

The major motivation for OMT appears to be the philosophy that object modeling yields
aview that will be easiest to understand by the customer and the analyst, designer, and
programmer, and that object models provide a fundamental, problem-oriented, structure more
likely to endure the vicissitudes of changing requirements. For this reason, we have dubbed the
OMT acronym with two alternate specifications. Objects Most Telling (easier to understand)
and Objects Most Timeless (more likely to endure).

For the AGMS problem, our OMT specification comprises pages D-1 through D-54. Our
Object Model for the AGMS, pages D-1 through D-9a, includes: a basic object model (sans
operations) (D-2), an object dictionary (D-3 through D-9), and a complete object model
(including operations) (D-9a). We will present a description, in alittle while, of how we
developed this object model. Sufficeto say for now that our preliminary object model and a
draft of the object dictionary was developed first, and that a complete object model and final
object dictionary was produced only after the dynamic and functional modeling were compl eted.

Our dynamic model encompasses the five state charts shown on pages D-10 through
D-15. In due course, we will discuss how this model was devel oped.

Our functional modeling warrants some discussion. We originally attempted to develop a
functional mode! following the guidelines presented by Rumbaugh, et al.*> The results of our
efforts are documented on pages D-16 through D-34. These pages begin with a system context
diagram (D-17) and progress through several levels of data flow diagram decomposition (D-19
through D-26). We were most unhappy with the outcome of this exercise. Many of the data
transformations are stimulated by unseen control transforms (the functional model is restricted to
datatransforms). Another source of concern isthe intent of the functional model. The functional
model is to help us define operations on objects we defined in the preliminary object model, and
yet, not objects are included in the functional model. Despite our misgivings, we completed the
functional model with psuedo-code, function descriptions for leaf-level data transforms (D-27
through D-31) and with adata dictionary for the functional model (D-32 through D-34).

Because we found our functional model to be confusing and, potentially, of little use for
identifying operations in our object model, we developed an aternate functional model (pages
D-35 through D-54). We began our aternate model with the same context diagram (D-17,
repeated as D-36) with which we started our original functional model. From the context model,
we decomposed the AGMS into a set of objects (D-37) using our preliminary object model asa
guide. Theinitial decomposition, into an object communications diagram, includes two
aggregate objects (Pump and Gas Station) and one leaf-level object (Communications Link).
Here we allocated external data and control flows to the objects, and we identified, using mainly
the dynamic model, some event flows between object. In this model, event flows are viewed as
function flows where one object calls afunction in another. For example, the AUTHORIZED
flow from the Communications Link object to the Pump object isviewed asif the
Communications Link is calling an AUTHORIZED function within the Pump.
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The Gas Station aggregate object is further decomposed, as shown in the object
communications diagram on D-38, into four |eaf-level objects: Smoke Detector, Heat Detector,
Gas Station, and Alarm. Again, these objects come from the preliminary object model.

The Pump aggregate object is decomposed, as shown in the object communications
diagram on D-39, into nine leaf-level objects. Card Reader, Cash Card, Credit Card, Cash
Transaction, Credit Transaction, LED, Gas Dispenser, Switch, and Pump. These objects also
appear on the preliminary object model.

Once we defined the hierarchy of objects as a set of object communications diagrams
OCDs), we transferred events from the dynamic model to the OCDs. This helped us verify the
flow of events through the object model and forced us to specify the inter-object communications
requirements of the AGMS. From here, we used the attributes in the preliminary object model to
document which objects get and set the attributes. We placed these function flows on the OCDs.
Finaly, we iterated over the OCDs, using the dynamic model and the preliminary object model
asour guide, to identify additional inter-object function flows that are needed. Then, we
transcribed those flows onto the OCDs.

After completing the analysis of our OCDs, we identified those objects that required a
more detailed functional model. For each such object, we created an object function diagram
(OFD). Our OFDsfor the AGMS are shown on D-40 through D-46. Callsto the data transforms
on the OFDs can be traced from the OCDs (except where specific calls are made from within an
object), but the OFD approach truly allows the specification of an object’s functions independent
of the specific context in which the object will be deployed. Thisindependenceisakey
advantage of object-oriented modeling.

The OFD, our own invention, coupled with the OCD, enabled us to tie the functional
model to the object and dynamic models. Thelogical coherence we achieved enabled usto
produce a functional model consistent with the object view of OMT. Functional modeling as
defined by Rumbaugh, et al.*?, we found to be divorced from the object model. This separation
leads easily to alogical incoherence between the object, dynamic, and functional views of an
OMT model. Such logical incoherence creates difficulties when allocating functions to the
object model. We found that our use of OCDs and OFDs made for an easy allocation of
functions to objects.

To complete our own functional model of the AGMS, we created object function
descriptions (D-47 through D-54) for each data transform identified on an OFD. Each function
description is shown using psuedo-code. We then updated our object dictionary to include a
specification of the calling sequence for each function from our function descriptions. Finaly,
we updated our preliminary object model (D-2) to include the allocation of functions to object
operations, thus producing our complete object model for the AGMS (D-9a).

Now we propose to describe the process we used to create our OMT model of the AGMS.
The reader who is uninterested in this discussion can certainly move ahead to Section IV where
we describe two aternate designs for a solution to the AGMS problem. One design begins with
our COBRA specification and uses ADARTS to develop a solution. The other design begins
with our OMT specification and uses OODARTS to develop a solution. The interested reader
can press ahead to understand how we created our OMT model.
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Our first job was development of the preliminary object model from the problem

statement. We employed a set of steps provided by Rumbaugh, et al.*?

1

© © N o 0o M WD

[ERY
o

|dentify candidate objects.

Discard inappropriate objects.

Initiate adata dictionary. (We enlarged thisto become an object dictionary.)
|dentify candidate associations.

Discard inappropriate associations.

|dentify candidate attributes.

Discard inappropriate attributes.

Refine inheritance.

Test access paths through the model.

. Iterate on 1 through 9. (Thisiteration is continuous during dynamic and functional

modeling aswell.)

The Rumbaugh book provides many suggestions for how to carry out each of these steps. We
found the suggestions given quite useful. We were able to devel op a reasonable object model for
the AGMS after reading the Rumbaugh book, and without ever having developed previously an
object-oriented model. We had the greatest difficulty with the identification of relationships.
We kept trying to specify functional relationships, rather than structural relationships. Once we
overcame this impediment, our modeling proceeded smoothly. The results we obtained from
following these steps are shown below as Figure 2.
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AGSM OBJECT MODEL
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Figure 2. Preliminary AGMS Object Model

We next focused on creating the dynamic model. We began by following the procedure
recommended in the Rumbaugh book.

1. Prepare scenarios.

2. Simulate the user interface.
3. Identify events.

4. Build state charts.

5. Match events with objects.

We defined scenarios by identifying external events that arrived into the AGMS. We categorized
these events by source and destination. We envisioned a dynamic entity as the destination for
each event. Thisimmediately led us to define state charts for the communications link, for the
gas station, and for the switch. Upon iteration, we identified dynamic objects that would create
internal events, and we discovered the destination of those events. This process led us to define a
state chart for the pump. We identified the need for a state chart in the detectors only after
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considering the mechanism they would use to detect emergency conditions. Here we decided
that each detector should only send one internal event for each time the detector found that the
threshold had been crossed in an upward direction. This requirement could best be implemented
with a state chart.

Before going on, we would like to make some comments on state charts, since they
provide a more extensive set of semantics than the state transition diagrams used in RTSA and
COBRA. Wewill key our comments to the state chart for the pump as shown in Figure 3.

OPEN from Gas Station

CLOSE from Gas Station

losed Opened

CASH CARD|
INSERTED /| CREDI[T CARD INSERTED /

Create Cash Create|Credit Transaction

Transaction NOT|AUTHORIZED/
reject transaction

aiting

uthorization

entry: authorize
transaction

AUTHQORIZED [Switch is not On]

uthorized Stopped from Gas
Dispensef
CLOSE from Gas Station /

Eject Card

CLOSE from
Gas Station /
Eject Card

IStopped from Gas Dispenser Wait On Done
entry / Send Stop
Dispensing to

Wait On Stopped
entry / Send Stop
Dispensing to
Gas Dispenser
exit / complete
transaction

ON from Switch

Gas Dispenser
exit / complete
transaction

AUTHORIZED [Switch is On]

Dlspensmg Stopped from Gas
Dispenser /

. Light "Card Value Used" LED,

do: Dispense Gas | complete Transaction

OFF from Switch

CLOSE from Gas Station

Figure 3. Pump State Chart From OMT Dynamic Model Of AGMS

State chart notation represents states as rectangles with rounded corners. The state names
arewritten in bold in the upper left-hand corner of astate. This provides room to annotate the
state with three semantic devices: 1) aset of actions (following entry/) taken anytime a stateis
entered, 2) a set of actions (following do:) performed continuously while in a state, and 3) a set
of actions (following exit/) taken upon leaving a state. The entry/ and exit/ notations enable the
analyst to avoid repeating identical actionson all transitionsinto and out of a state, and the do:
notation replaces the enabl e/disable operations on RTSA and COBRA state transition diagrams.
Of course, each transition into and out of a state can also be labeled with actions taken only
during that transition. The precedent rules are as expected: first, the actions on the specific
transition into a state (see the Waiting Authorization state in Figure 3) are executed, followed
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by those associated with an entry/ (see, again, the Waiting Authorization state) notation in a
state. Then, whilein the state, al do: actions (see the Dispensing state in Figure 3) are
continuously performed. Upon leaving a state, first the actions associated with the exit/ (see the
Wait On Stopped state in Figure 3) notation in the state are performed, followed by any actions
(see the STOPPED from Gas Dispenser transition from the Dispensing state in Figure 3) on the
specific transitions out of the state.

Each transition is activated by a specific named event with the NAME in caps (see, for
example, the CREDIT CARD INSERTED event on atransition leaving the Opened statein
Figure 3). Optionally, the name can be modified by afrom object, (for example, asin the
CLOSE from Gas Station event on the transition leaving the Opened state in Figure 3) denoting
the name of the object that sent or caused the event. An additional modifier can constrain a
transition by placing a condition on the named event. Such conditions follow the event name,
and the optional from modifier, and are enclosed in [square brackets] (see, for example, either
AUTHORIZED event that causes atransition from the Waiting Authorization state in Figure
3). When actions occur during atransition, they are listed after a/ that follows the event name
and modifiers (for example, see the CLOSE from Gas Station event that causes an Eject Card
action during the transition between the Waiting Authorization and Closed statesin Figure 3).

These additional notational conveniences of state charts provide only superficial
enhancements to state transition diagrams,; however, the more regular notation of state charts
probably improves the potential for automated tool support. An additional conceptual
improvement that state charts do provide, however, isthe ability to hierarchically nest and to
sequentially decouple finite state machines. Inthe AGMS problem we did not use these features
of state charts. The interested reader is referred to the Rumbaugh book, and to references there to
work by Harel, for afuller accounting of state chart notation.

Once the dynamic model was "completed” (please be aware that here, as with the object
model, significant and continuous iteration is required), we developed the functional model,
beginning with a system context diagram. We previously discussed the process we followed to
decompose the system into Object Communication Diagrams and then to Object Function
Diagrams and finally to Object Function Descriptions. Once the dynamic and functional models
were complete, we began to add operations to our preliminary object model.

The Rumbaugh book suggests several sources for identifying object operations. We
recount those sources here.

1. From the object model (i.e., gets and sets on attributes).
From eventsin the dynamic model.
From transition and state actions and activities (i.e., do: actions).

From functions within the functional model.

o A~ W DN

From shopping lists (i.e., agood object of this type should have these functions).

Aninitial decision we faced concerned events passed between the state charts. We could
represent each event arriving at an object as an operation of that object, or we could choose to
encapsul ate the entire state chart within a single operation of the receiving object. We chose to
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encapsulate the state chart in asingle operation. Usually, we denoted this operation by the name
process_event. A second decision we faced concerning the state charts was whether to represent
the generation of events with specific send operations, or to hide event generation within the
process_event encapsulation operation. We chose to represent event generation explicitly.

After generating operations from the dynamic model, we turned our attention to the
functional model. Here, we created operations for each function identified in the functional
model for each object. Thiswork was greatly simplified because our functional model was
created within the context of our preliminary object model. We then added any operations that
supported the internal operation of specific objects, but which seemed perhaps useful in some
contexts when accessed from outside the object. Thiswas alimited application of the shopping
list suggested by Rumbaugh.

We had to step somewhat beyond the guidance provided in the Rumbaugh book if we
were to define operations to support modeling of polymorphism, coupled with inheritance.
Polymorphism appears in the Rumbaugh book on three pages. On page 2, Rumbaugh, et al.,
explain that polymorphism means that the same operation may behave differently in different
classes. They fail to inform the reader that polymorphism can be combined with inheritance to
produce some powerful results. On page 25, they explain that when classes share polymorphic
operations each definition of the operation must have the same number and type of input
parameters and the same return result, as well asasimilar intent. Finally, on page 328, they
mention polymorphism in connection with a discussion of the CLOS language. The limited
discussion of polymorphism contained in the Rumbaugh book is simply one example of what
John Palmer terms gross concept neglect.™

John Palmer explains that almost nothing is discussed about the concept of polymorphism
in any of the most popular object-oriented analysis and design works, including Coad-Y ourdon?,
Shlaer-Méllor', and Rumbaugh®. Palmer goes on to explain why polymorphism is an important
object-oriented analysis and design concept. He gives four reasons.

1. Polymorphism can reduce the complexity of operation functional specifications.

2. Inclusion of polymorphism in object-oriented analysis can reduce the conceptual gap
between analysis and object-oriented design.

3. Polymorphism is consistent with the way in which traditional analysis methods have
evolved (i.e., precisely defined functions have been identified over time and have become
standards for analysis).

4. Polymorphism is aconcept that parallels the way userstypically think (i.e., people often
think of the same function carried out differently depending on the context).

Because we intended to take our OMT specification on to an object-oriented design, we decided
that polymorphism should be employed in the analysis. Fortunately, OMT provides for abstract
operations, and, indirectly, for redefining operations that have been given default behavior in a
superclass.

Recall from the preliminary object model (Figure 2 or page D-2) that we identified three
cases of inheritance: 1) Detector (inherited by Heat Detector and Smoke Detector), 2)
Transaction (inherited by Credit Transaction and Cash Transaction), and 3) Card (inherited by
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Corporate Credit Card and Cash Card). In each of these cases we employed polymorphism. At
this stage we will introduce the complete object model, shown as Figure 4.
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D-9a AGSM COMPLETE OBJECT MODEL

Figure 4. Complete Object Model for the AGMS Problem

In the case of the Detector superclass, we defined an abstract operation, read. (An
abstract, or virtual, or deferred operation is one that defines what, but not how. No class
containing an abstract operation may ever be instantiated, but such a class can be inherited.) In
essence, the Detector class embodies all of the behavior of a detector except for the read
operation. A read operation must be defined by any class that inherits the Detector class. Thus,
in our specification of the AGMS problem, aHeat Detector and a Smoke Detector behave
identically, except for how they read the sensor data. We employed a similar approach when
defining the Transaction class.

The Transaction class contains three abstract operations: 1) complete, 2) authorize, and
3) rgject. The behavior of each of these operationsis defined differently for each of the
subclasses of Transaction (i.e., Credit Transaction and Cash Transaction). Now, whenever a
complete, authorize, or reject operation is invoked on a Transaction object, the correct behavior
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will occur for the specific type of Transaction that is referenced. For the complete and authorize
operations, a Card classis used as an input parameter. Thisleads usto our final use of
polymorphism in the OMT analysis of the AGMS.

The Card class, although meant to be inherited, can be instantiated because we have
defined default behaviors for every operation of the class. The default behaviors give alogically
consistent, although not very useful, set of operations for the Card class. The Cash Card class
inherits Card, and redefines the set cash value and get cash value operations. In an
object-oriented design, the set account number and get account number operations might be
suppressed in the definition of a Cash Card, but in OMT no notation permits such suppression;
therefore, we chose to let the default operations obtain when no redefinition isgivenin a
subclass. Since the default operations were defined to work properly, no problem will occur.

The Corporate Credit Card class inherits Card, and redefines the set account number and
get account number operations. The default definitions for get cash value and set cash value
stand in this case.

After weidentified all the operations needed for our AGM S object model, we
documented the operation behaviors, using psuedo-code, on pages D-47 through D-54. We then
updated the object dictionary (D-3 through D-9) to reflect the specification of the signature for
each operation, and, finally, we produced a complete object model (D-9a) by adding to the
preliminary object model the operations associated with each object class. This completes our
OMT specification for the AGMS problem.

V. Concurrent Design Solutions

In this section of the paper, we present two design solutions for the AGMS problem. One
solution, included as Appendix E, begins with our COBRA specification and applies the
procedure and notation from the ADARTS method.® The second solution, included as Appendix
F, begins with our OMT specification and applies an Object-Oriented Design Approach for
concurrent, Real-Time Systems (OODARTS). Rumbaugh, et al., provide very little guidance for
creating a concurrent, real-time design from an OMT specification. (The skeptical reader is
referred to Chapter 9 of the Rumbaugh book.?) ADARTS provides a good method and notation
for design of concurrent systems, but does not assume a strictly object-oriented environment.
OODARTS was devised by usto facilitate the generation of an object-oriented design from an
OMT specification. We derived OODARTS from the solid foundation laid by the ADARTS
method and notation. In most cases, we adopted ADARTS techniques with only slight
adaptations, as required for an object-oriented environment. We will explain our approach in due
course, but first we describe our ADARTS design.

A. ADARTS-- A Recipe for Solutions

ADARTS can be thought of as arecipe for concurrent, real-time solutions because, like a
recipe, ADARTS delineates steps for producing a dish (the design) from a set of ingredients (the
products of an analysis, such as RTSA or COBRA). Also like arecipe, the delectability of the
dish varies with the skill of the chef, yet even an inexperienced cook can produce an edible dish
simply by following the steps provided.
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ADARTS provides a three-phase approach to system design. In phase one, tasks are
identified, using a set of criteriafor task structuring, and atask architectureis created. An
overview of our ADARTS task architecture for the AGMS is given on pages E-1 through E-5.
By applying the ADARTS task structuring criteriato the COBRA data/control flow diagramsin
Appendix C, we created the task architecture shown on E-3, and reproduced below as Figure 5.
The architecture is repeated on E-4, where the inter-task message flows are annotated with
numbers to facilitate a discussion of the message flows through the system of tasks.

For each task identified, ADARTS requires that atask behavior specification (TBS) be
produced. For our AGMS design, the task behavior specifications are given on pages E-6
through E-27. Each TBS: 1) names the task, 2) describes the input and outputs, categorized as
events, messages, and data, of the task, 3) identifies references to any information hiding
modules (IHMs, as discussed below), 4) specifiesthe ADARTS criteria used to identify the task
and provides references to the control and data transformations in the problem analysis that are
included within the task, 5) indicates the tasks timing characteristics and priority, 6) specifiesthe
thread of control for the task, and 7) documents any errors that the task detects or avoids.

The TBSs are produced initially from the problem analysis, and then, in the third phase of
the ADARTS method, are updated to include references to, and operations from, information
hiding module (IHM) specifications, the product of the second phase of the ADARTS method.
Our IHM specifications for the AGMS design are shown on pages E-28 through E-38. IHMs are
identified using a set of module structuring criteriaincluded within the ADARTS method. For
each IHM in the design, ADARTS requires a specification that: 1) names the module, 2)
describes the information hidden within the module, 3) identifies the ADARTS structuring
criteria used to define the module, 4) documents any assumptions made about the module, 5)
anticipates any changes that will be made to the module, and 6) specifies each operation
included in the module.

Once the IHMs are specified, ADARTS requires that a system architecture be produced
by allocating modulesto tasks. This system architecture design comprises the third phase of the
ADARTS method. Also, during this phase of the design, ADARTS requires that the TBSs be
updated to account for the IHMs. This amounts to including IHMs in the appropriate reference
section of each TBS and to adding IHM operation calls to the TBS thread of control section,
when appropriate. Our ADARTS system architecture for the AGMS problem is shown on pages
E-39 through E-41. We can now run quickly through the ADARTS design we produced from
the COBRA specification of the AGMS problem.
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Figure 5. ADARTS Task Architecture for the AGMS from a COBRA Specification

Asshown in Figure 5, three tasks comprise the gas station (Detector Array, Alarm and
Gas Station Control), one task provides communications services, and a set of four tasks control
each pump within agas station. The Card IHM is shared between the Card Reader and Pump
Control tasks, and the Transaction IHM is shared between the Pump Control and Gas Dispenser
tasks.

The reader can probably discern that ADARTS shows tasks as parallelograms and IHM s
asrectangles. Message flows, shown as arcs between tasks, can be loosely-coupled (flowing into
queues) or tightly-coupled, without reply (flowing through half rectangles) or with reply (flowing
through rectangles that have been flayed and twisted -- note that no icons for tightly-coupled
messages with reply are shown in Figure 5). External events are shown as jagged lines with
arrowheads attached. For a detailed accounting of the ADARTS notation, the reader is referred
to the creator of ADARTS.?

After we identified the IHMs in our design, we allocated those IHMs to the AGM S tasks
to create a system architecture diagram, as shown below in Figure 6. We will describe the
allocations we made.
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Figure 6. ADARTS System Architecture for AGMS from a COBRA Specification

Within the Detectors task, we included one IHM for each detector in the gas station.
Each specific IHM depends on the type of detector, smoke or heat. We placed the gas station
IHM, encapsulating the gas station control state transition diagram, inside the Gas Station
Control task. Inside the Communications Link task, we placed aLink IHM that provides all
operations needed to handle communications services. We placed the Pump IHM, encapsulating
the Control Pump state transition diagram, inside the Pump Control task. The Gas Dispenser
IHM, which hides the interface to the gas dispenser hardware, was placed into the Gas Dispenser
task. The Card Reader IHM, which hides the details of the card reader hardware, we alocated to
the Card Reader task. Since the Card and Transaction IHMs had already been placed between
tasks, we had merely to add the operations supported by the IHMs and then to show which
operations were invoked by which tasks.

The interested reader is advised to consult the TBS for each task and the specification for
each IHM to gain an understanding of the operation of the system. Enough detail is provided so
that a programmer can begin implementation of tasks and modules. For those readers who
simply desire a more comprehensive overview of our ADARTS design for the AGMS we
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recommend the task and system architecture overviews beginning on pages E-2 and E-40,
respectively. Now, we move on to discuss our OODARTS design for the AGMS.

B. OODARTS-- Altering the Recipe

Although ADARTS makes awonderful recipe for obtaining designs from analyses, the
method was devel oped absent additional ingredients that come with a full, object-oriented model.
The ingredients available from an object-oriented analysis technique, such as OMT, tend to be
fewer, but richer than those available from RTSA and COBRA. RTSA provides functions as
ingredients for the design. These functions can be viewed as individual herbs and spices.
COBRA adds aobjects in addition to functions. Such objects can be viewed as prepackaged
combinations of herbs, spices, and other seasonings. OMT ingredients for the design are all
prepackaged, i.e.,, OMT provides only objects. In addition, OMT ingredients can be altered
through specia handling that takes advantage of the advanced properties of such ingredients.
OODARTS provides arecipe that employs some of the specia handling available with OMT
ingredients. And OODARTS builds on the existing recipe given by ADARTS.

ADARTS can be used to create a decent design from an OMT specification, but a number
of concepts, such as inheritance and polymorphism, in the object-oriented paradigm cannot be
exploited. Also, astrict object-oriented model requires that all unitsin the design be represented
as objects, while ADARTS, relying on tasks and information hiding modules as its major
building blocks, does not recognize the concept of an object. On the other hand, ADARTS
provides the multiple threads of control needed in a concurrent design, while object-oriented
approaches hand-wave about each object potentially executing under its own thread of control.

ADARTS provides criteriafor structuring tasks from objects and functions, for
structuring IHMs from objects and functions, and for allocating IHMs to tasks. When starting
from an OMT specification, al functions have already been allocated to objects, and so, thereis
no need to allocate functions. And, since each object can potentially possess athread of control,
the main goal of an object-oriented design method should be to determine which objects have an
independent thread of control (i.e., are active objects) and which do not (i.e., are passive objects).
Then, for each active object, athread of control must be specified.

On the basis of these observations, we devised an Object-Oriented Design Approach for
concurrent Real-Time Systems (OODARTS), from the foundation established by ADARTS.
While afuture refinement of OODARTS might show a greater divergence from ADARTS, our
initial development of OODARTS can be traced easily from ADARTS. We will explain our
approach before presenting our OODARTS design for the AGMS.

The first phase in OODARTS requires that an active object (AO) architecture be
developed. An AO possesses aindependent thread of control; thus, an AO isanalogousto an
ADARTS task, except that an AO is an object. We require that each AO have at |east two
operations: 1) Create and 2) execute. The Create operation establishes the connections to other
AOQOsin the architecture, sets up initial attribute values, and encapsulates the creation of any
passive objects used by the AO. An AO can have any additional operations required. We can
envision an AO class that has default Create and execute operations, that isinherited by each AO
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in the design, and that is refined to fit the behavior required for the type of object that is being
made active.

To facilitate communication among AOs, we define an number of other concepts. An
ACTIVE QUEUE provides a receptacle where |oosely-coupled messages passed to an AO can be
placed until the AO requests them. Thisis analogousto an ADARTS message queue. We can
also envision an ACTIVE PRIORITY QUEUE, analogous to an ADARTS priority message
queue.

Messages can be sent by AOs. Messages sent to other AOs are analogous to ADARTS
tightly-coupled messages. Messages sent to ACTIVE QUEUES are analogous to ADARTS
loosely-couple messages. Messages sent to ACTIVE PRIORITY QUEUES are analogous to
ADARTS loosely-coupled messages sent with a specific priority. We define an operation send
MESSAGE to DESTINATION [with REPLY]. Here MESSAGE can be viewed as a system